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Abstract
We discuss how the anomalous increase of the viscosity in colloidal systems
with short-range attraction can be related to the formation of long-living
clusters. Based on molecular dynamics and Monte Carlo numerical simulations
of different models, we propose a similar picture for colloidal gelation at low
and intermediate volume fractions. On this basis, we analyze the distinct role
played by the formation of long-living bonds and the crowding of the particles
in the slow dynamics of attractive colloidal systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Colloidal suspensions include systems that can be very different and complex at a chemical
level, from proteins to blood, milk, paints, or different types of microemulsions [1–3]. In spite
of this diversity, in the experiments where the volume fraction and the strength of the attraction
between the particles can be controlled and varied, similar phenomena of slow dynamics
are observed [4, 5, 7, 6, 8]. Hence these studies become a fundamental tool to investigate
slow dynamics and structural arrest in complex fluids within a general framework, a research
field where the work of Chen, using neutron and light scattering, has made an outstanding
contribution over the years [9].

Interestingly, in recent years, a fruitful interplay has developed between experiments and
modelling studies [10] due to the possibility of using simple mesoscopic models to investigate
the slow dynamics via numerical simulations. In the following, we will briefly review some
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recent contributions to the understanding of the phenomena of slow dynamics in attractive
colloidal systems at low and intermediate volume fractions obtained by the group in Naples.

Firstly, it is interesting to remark that in attractive colloidal suspensions a strong short-
range attraction between particles is able to produce irreversible aggregation phenomena,
leading to a permanent gel at extremely low volume fractions, due to aggregation limited by
the diffusion of particles or clusters [11]. On the other hand, it is well known that, at high
volume fraction and in the presence of a weak interparticle attraction, these systems display
a glassy behaviour and have been investigated intensively as the prototype of hard sphere
glasses [4]. At intermediate volume fractions and strengths of the attraction, i.e. far from
both this glassy regime and the irreversible aggregation regime, unexplained slow dynamics
is observed, accompanied by structure formation and a significant change in the viscoelastic
behavior, in close analogy to gel formation [8, 12]. This picture, supported by experimental and
numerical studies, has led to the proposal of a unifying description for these phenomena [13]. It
underlines the fact that, in the slow dynamics, a relevant number of particles must stop moving
all together, and might therefore suggest that gelation phenomena in colloidal systems at lower
volume fractions could also be related to a glassy structural arrest. In this case, different
mechanisms have been proposed [14] for the trapping of particles in the well of the attractive
potential, in analogy to the caging mechanism invoked for the glass transition, or a glassy
structural arrest of clusters.

In order to further understand this point, it is worth considering the nature of gelation
transition [15]. Gel formation is the transition from a viscous liquid (a polymer solution
or a particle dispersion...) into an elastic disordered solid, which is the gel phase. This
means that the viscoelastic response of the system changes, with the viscosity coefficient
strongly increasing in the liquid phase and the onset of a low-frequency elastic modulus
that characterizes the gel phase. That is, the high-frequency elastic response of the material
moves towards lower and lower frequencies. In polymer gels, such a dramatic change of the
viscoelastic response is typically associated with the formation of a spanning interconnected
network, which is often well described in terms of a random percolating network [16]. Of
course, the random percolating structure here is not considered at all in the sense of a geometric
instantaneous percolation, which could not be responsible for the change in the viscoelastic
response, but in the sense of the formation of a permanent interconnected structure. In spite
of many differences in the details of the network formed in colloidal irreversible gels, whose
structures tend to be more open and similar to those obtained with DLCA models [11], the
change in the viscoelastic properties is qualitatively the same.

On the basis of these considerations, we have proposed [17] that two different mechanisms
could be responsible for the slow dynamics in attractive colloidal systems, that is, the formation
of permanent or long-living structures at low volume fractions in the presence of a significant
attraction strength, and crowding of the particles at high volume fractions. Depending on the
details of the system, at different volume fractions the typical energy, time and length scales
might produce a different interplay between these two mechanisms and qualitatively diverse
slow dynamics.

2. A minimal model for gelation phenomena

We have first investigated the role of permanent or long-living structures in the dynamics
by means of a minimal model for gelation phenomena, studied via lattice Monte Carlo
simulations [17]. We consider a solution of tetrafunctional monomers with excluded volume
interactions on a cubic lattice of size L. At t = 0, the volume fraction φ is fixed, and bonds
between monomers are randomly quenched. The four possible bonds per monomers, randomly
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Figure 1. The relaxation time τ (in MCstep/particle) as a function of the volume fraction φ,
calculated from the incoherent scattering function at wavevector q = π/8 in lattice unit length.
From left to right: the data for the permanent bond case diverge at the percolation threshold with a
power law (continuous line); see text. The other data refer to finite τb = 104, 5 × 103, 103, 102

MCstep/particle, decreasing from left to right (the dashed lines are guides to the eye). (Data
obtained using the model from [20].)

selected, are formed along lattice directions between monomers that are nearest neighbors and
next nearest neighbors. We consider two different cases: permanent bonds and bonds with
a finite lifetime τb. In the case of permanent bonds, the monomers diffuse according to the
bond-fluctuation dynamics (BFD) [18]. The system has a percolation transition at φc =
0.376 ± 0.003 and, after the monomers have reached the stationary state by diffusing on the
lattice, we study the system for different values of concentration. In the case of a finite bond
lifetime τb, we start with the same configurations as the previous case, with a fixed φ where
the bonds have been randomly quenched. During monomer diffusion with BFD, at each time
step we attempt to break each bond with a frequency 1/τb. Between monomers separated by a
distance of less than l0, bonds are then formed with a frequency 1/τu.

These two parameters of the model can be generally related to the case where bond
formation implies the overcoming of an entropic barrier. The bond lifetime τb can be related
to the height of such an entropic barrier Sb, i.e. τb ∼ eSb (in units of Boltzmann’s constant).
The characteristic time τu for bond formation is τu ∼ eSu , where Su is the entropic barrier to be
overcome in order to go from the un-bonded state to a bonded state. Therefore the probability
pb for two close monomers to be bonded is given by

pb = eSb

eSb + eSu
.

Such a bond probability can be much smaller than 1, depending on the value of Su. As a
consequence, in this case percolation can occur at quite a high volume fraction compared to
other colloidal systems [8, 13], as is in fact observed, for example, in micellar systems [19].

From the time autocorrelation function, fq(t), of equilibrium density fluctuations for
the smallest wavevector q0 = 2π

L , we calculate the relaxation time τ as the time such that
fq(τ ) ∼ 0.1. In figure 1, the relaxation time, τ , is plotted as a function of the volume
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fraction, φ, for the permanent bonds and for the case of finite lifetime bonds at different values
of τb. The data refer to a lattice size L = 16 and q0 = π/8 in lattice unit length [19]. In the
figure, on the left one finds the data for the permanent bond case, and from left to right one finds
the data for finite bond lifetime, for decreasing values of τb. In the case of permanent bonds,
τ (φ) displays a power-law divergence, (φc − φ)−k , at the percolation threshold. For finite
bond lifetime τb, the relaxation time instead increases following the permanent bond case, up
to some value φ∗, and then deviates from it. For higher φ, the increase in the relaxation time
corresponds to the onset of the glassy regime in the relaxation behavior discussed in [20]. This
qualitative behavior has also been confirmed via molecular dynamics simulations in [25].

With the crude simplifications that are adopted, this can be considered to be a toy model
for gelation phenomena. Nonetheless, it turns out to capture some essential physics of the
problem. The results obtained show that, when the spanning structure is permanent (on the
observation time scale), the relaxation time in the system is controlled by the structure forma-
tion and critically increases at the percolation threshold. When the spanning structure is not
permanent and the bond lifetime is short enough compared to the relaxation time in the system,
the dynamics is not affected by the percolation threshold and a more glassy slowing down, due
to the crowding of the particles, can be observed only at higher volume fractions. Finally, when
the bond lifetime is comparable to the relaxation time in the system, τ is affected by the forma-
tion of long-living structures of increasing size, but does not show a real critical increase, since
a permanent structure of critically increasing linear size does not exist. In this case, a crossover
from a gel-like to a glassy dynamic regime can be observed by increasing the volume fraction.
This picture, first proposed in [17], has been recently receiving increasing attention.

3. Colloidal gelation in the presence of competing attraction and repulsion

We have further investigated this problem within a more realistic framework for colloidal
systems, where structure formation is due to interparticle interaction: in colloids, recent
experimental works highlighted the presence of a net charge on colloidal particles [3, 7]
giving rise to a long-range electrostatic repulsion in addition to the depletion interaction. The
competition between attractive and repulsive interactions produce a rich phenomenology and
a complex behavior as far as structural and dynamical properties are concerned. Hence, for
particular choices of the interaction parameters, the liquid–gas phase transition can be avoided
and the cluster size can be stabilized at an optimum value [21]. Experimentally, such a
cluster phase, made up of small equilibrium monodisperse clusters, is observed using confocal
microscopy at low volume fraction and low temperature (or high attraction strength) [8, 7, 3].
Increasing the volume fraction, the system is transformed from an ergodic cluster phase to a
nonergodic gel [8, 7], where structural arrest occurs. We consider a system of N = 10000 φ

particles, with φ = 0.08–0.25, interacting via a DLVO-type potential [22], which contains a
van der Waals type interaction plus an effective repulsion due to the presence of charges:

V (r) = ε

[
a1

(σ

r

)36 − a2

(σ

r

)6 + a3e−λ( r
σ
−1)

]
, (1)

where a1 = 2.3, a2 = 6, a3 = 3.5, and λ = 2.5.7 With these parameters, the repulsion term
dominates the van der Waals attraction at long range, providing a short-range attraction and
a long-range repulsive barrier. The effective repulsion in the potential prevents the liquid–gas
phase separation and stabilizes the size of the clusters, as expected [21]. To mimic the colloidal

7 The potential V (r), equation (1), essentially coincides with a Lennard-Jones interaction plus a repulsive Yukawa

potential ε
[

A1
(

σ
r

)36 − A2
(

σ
r

)6 + a e−r/ξ
r
σ

]
, with A1 = 3.56, A2 = 7.67, a = 36.79 and ξ = 0.49σ .
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Figure 2. Main frame: the cluster size distribution, n(s), at kBT = 0.2ε and φ = 0.13 displays a
peak around an optimum cluster size. Inset: at φ = 0.16 � φp , a power-law tail appears.

dynamics, we performed molecular dynamics simulations at constant temperature. Equations
of motion were solved in the canonical ensemble (with a Nosé–Hoover thermostat) using a

velocity Verlet algorithm [23] with a time step of 0.001t0 (where t0 =
√

mσ 2

ε
and m is the

mass of the particles). We equilibrate the system at temperatures kBT = 0.2, 0.23, 0.25ε and φ

increasing from 0.07 to 0.23. Here we review the main results of [17], analyzing the structure
and the dynamics as the temperature and volume fraction are varied. We first calculate the static
structure factor, S(k), and the cluster size distribution, n(s), where two particles are linked if
their relative distance is smaller than the local maximum of the potential.

At low temperatures (i.e. when the kinetic energy becomes smaller than the repulsive
barrier) and low volume fractions, the static structure factor, S(k), displays a peak at around
k0 � 2. This feature is due to the fact that the competing short-range attraction and long-
range repulsion produce stable clusters of a typical size. The presence of a typical size clearly
appears in the cluster size distribution, n(s), plotted in figure 2 at kBT = 0.2ε and φ = 0.13.
It is interesting to observe the secondary peak due to the fusion of two stable clusters. By
increasing the volume fraction φ, a spanning cluster appears at φ = 0.16 for kBT = 0.2ε, and
the cluster size distribution typically displays a power-law decay with an exponent τ � 2.18,
consistent with the random percolation model [24]. In figure 3, we show the dependence of the
cluster size, s, on its radius, r , at φp: the data correspond to a compact structure for clusters of
dimension s � 10 and radius r � 1, a fractal dimensionality df � 1.2 on intermediate length
scales, and a crossover to df � 2.5 at larger length scales. These results suggest that, at low
volume fraction, compact stable clusters form with typical size s � 10 and radius r � 1. By
increasing the volume fraction, a residual attractive interaction between the clusters produces
tube-like structures with fractal dimension df � 1.2 up to a size s ∼ 60. By further increasing
the volume fraction, these structures coalesce to build a random percolating network. From the
time autocorrelation functions of density fluctuations fq(t) and of the bonds B(t), we calculate
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Figure 3. The cluster size, s, as a function of the radius, r , at kBT = 0.2ε and φ = 0.16 � φp:
while at very small scales clusters are compact, on intermediate length scales the dependence
suggests the presence of very thin and chain structures made up by clusters of typical size s � 10;
it crosses over to a random percolation type of structure over larger length scales.
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Figure 4. The bond lifetime, τb, and the relaxation time, τα (in units of MD steps) as a function of
the volume fraction φ at kBT = 0.25ε. The curve in figure is a power-law fit, (φc − φ)−γ , with
φc � 0.22 and γ � 4.0.

the relaxation time τ and the bond lifetime τb, which is not tuned as an external parameter in this
case but results from the aggregation process. In figure 4, the relaxation time τ obtained for the
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wavevector q � 2 is plotted as function of the volume fraction together with the bond lifetime
τb(φ) at the low temperature T = 0.25. Over these length scales, at low volume fractions,
i.e. below the percolation threshold, the bond lifetime is significantly larger than the relaxation
time and the last one increases following a power law close to the percolation threshold. Close
to the percolation threshold, on the timescale of the structural relaxation time, the bonds cannot
be considered to be permanent anymore and we observe a crossover to a different dynamic
regime. This interpretation is in agreement with the picture proposed above, supporting the idea
that two different mechanisms—the formation of long-living structures and the crowding of the
particles—may be responsible for the slow dynamics in attractive colloidal systems, producing
different dynamical regimes at different volume fractions. It is also interesting to mention
that, in colloidal systems with competing attractive and repulsive interactions, the formation
of a long-living gel network may interfere with the formation of modulated structures and
ordered phases, therefore producing a more complex scenario for the dynamics. Here we have
focused on the fact that, at low volume fractions, the slow dynamics is crucially related to the
formation of long-living clusters, providing evidence for the percolation nature of the colloidal
gel transition at low temperatures. This scenario has been confirmed by recent experiments [7]
and other molecular dynamics studies [25]. Finally, at higher temperatures, when the bond
lifetime does not play any role, structural arrest will occur at higher volume fractions and will
eventually be due to the hard sphere component of the potential, producing the crowding of the
particles.
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310 1797
[11] Meakin P 1983 Phys. Rev. Lett. 51 1119

Botet R and Jullien R 1983 Phys. Rev. Lett. 51 1123
[12] Trappe V and Weitz D A 2000 Phys. Rev. Lett. 85 449
[13] Trappe V, Prasad V, Cipelletti L, Segre P N and Weitz D A 2001 Nature 411 772
[14] Kroy K, Cates M E and Poon W K 2004 Phys. Rev. Lett. 92 148302

Puertas A, Cates M E and Fuchs M 2004 J. Chem. Phys. 121 2813
Sciortino F, Mossa S, Zaccarelli E and Tartaglia P 2004 Phys. Rev. Lett. 93 055701
Mossa S, Sciortino F, Tartaglia P and Zaccarelli E 2004 Langmuir 20 10756

[15] Flory P J 1954 The Physics of Polymer Chemistry (Ithaca, NY: Cornell University Press)
de Gennes P G 1980 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
Ferry J 1980 Viscoelastic Properties of Polymers (New York: Wiley)

[16] Stauffer D, Coniglio A and Adam M 1982 Adv. Polym. Sci. 44 103
[17] Coniglio A, de Arcangelis L, Del Gado E, Fierro A and Sator N 2004 J. Phys.: Condens. Matter 16 S4831

de Candia A, Del Gado E, Fierro A, Sator N and Coniglio A 2005 Physica A 358 239
[18] Carmesin I and Kremer K 1988 Macromolecules 21 2819
[19] Mallamace F, Chen S H, Coniglio A, de Arcangelis L, Del Gado E and Fierro A 2006 Phys. Rev. E. 73 020402(R)
[20] Del Gado E, de Arcangelis L and Coniglio A 2003 Europhys. Lett. 63 1

Del Gado E, de Arcangelis L and Coniglio A 2004 Phys. Rev. E 69 051103
[21] Groenewold J and Kegel W K 2001 J. Phys. Chem. B 105 11702
[22] Israelachvili J N 1985 Intermolecular and Surface Forces (London: Academic)

Crocker J C and Grier D G 1994 Phys. Rev. Lett. 73 352
[23] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Oxford University Press)
[24] Stauffer D and Aharony A 1992 Introduction to Percolation Theory (London: Taylor and Francis)
[25] Sciortino F, Tartaglia P and Zaccarelli E 2005 J. Phys. Chem. B 109 21942

Mossa S et al 2004 Langmuir 20 10756
[26] Tarzia M and Coniglio A 2006 Phys. Rev. Lett. 96 075702

de Candia A, Del Gado E, Fierro A, Sator N, Tarzia M and Coniglio A 2006 Preprint cond-mat/061298

http://dx.doi.org/10.1103/PhysRevLett.93.115701
http://dx.doi.org/10.1126/science.1120714
http://dx.doi.org/10.1103/PhysRevLett.51.1119
http://dx.doi.org/10.1103/PhysRevLett.51.1123
http://dx.doi.org/10.1103/PhysRevLett.85.449
http://dx.doi.org/10.1038/35081021
http://dx.doi.org/10.1103/PhysRevLett.92.148302
http://dx.doi.org/10.1063/1.1768936
http://dx.doi.org/10.1103/PhysRevLett.93.055701
http://dx.doi.org/10.1021/la048554t
http://dx.doi.org/10.1088/0953-8984/16/42/002
http://dx.doi.org/10.1016/j.physa.2005.07.003
http://dx.doi.org/10.1021/ma00187a030
http://dx.doi.org/10.1103/PhysRevE.73.020402
http://dx.doi.org/10.1209/epl/i2003-00468-4
http://dx.doi.org/10.1103/PhysRevE.69.051103
http://dx.doi.org/10.1021/jp011646w
http://dx.doi.org/10.1103/PhysRevLett.73.352
http://dx.doi.org/10.1021/jp052683g
http://dx.doi.org/10.1021/la048554t
http://dx.doi.org/10.1103/PhysRevLett.96.075702
http://arxiv.org/abs/cond-mat/061298

	1. Introduction
	2. A minimal model for gelation phenomena
	3. Colloidal gelation in the presence of competing attraction and repulsion
	Acknowledgments
	References

